

Teaching plan - PhD programme in NEUROSCIENCE

38°Cycle a.y. 2021/2022

Course	SSD	hrs	credits	Educational form*	Type of activity**	Mandatory/Choosen activity
Patient-Derived in vitro Glioma Models: from patients to dish to 3D bioprinting technology.	MED03	8	1	Lecture	cross-curricular	choosen activity
Glial cells in health and disease	BIO10	8	1	Lecture	cross-curricular	choosen activity
Pathways, biomarkers and new therapies in neurodegenerative disorders	MED26	8	1	Lecture	cross-curricular	choosen activity
Neuroinflammation	MED04	8	1	Lecture	cross-curricular	choosen activity
Food and brain: Yin and Yan	BIO10	8	1	Lecture	cross-curricular	choosen activity
The concept of staminality in neuroscience	BIO16	8	1	Lecture	cross-curricular	choosen activity
Neurogenetics	MED26	8	1	Lecture	cross-curricular	choosen activity
The principle of 3R in Biomedical studies	BIO 17	12	1	Lecture	cross-curricular	choosen activity
Animal models of human disease in neuroscience	BIO16	8	1	Lecture	cross-curricular	choosen activity
Meta-analyses in neurosciences: an introduction	MED25	8	1	Laboratory training	cross-curricular	choosen activity
Development of diagnostic methods for the evaluation of the response to treatments in preclinical models of glioma	MED50	8	1	Lecture	cross-curricular	choosen activity
Non-invasive brain stimulation techniques in cognitive neuroscience	M-PSI02	16	2	Lecture	cross-curricular	choosen activity
Basic Mechanism of Epilepsy	BIO09	8	1	Lecture	cross-curricular	choosen activity
Neuropsychopharmacology	BIO 14	8	1	Lecture	cross-curricular	choosen activity
Neuropsychology and Dementias: entry course	MED26	24	2	Lecture	cross-curricular	choosen activity
Neuropsychology and Dementias: advanced course	MED26	24	2	Lecture	cross-curricular	choosen activity
Neuropshychology Lab	MED26	12	1	Laboratory training	cross-curricular	choosen activity
Peripheral Neuropathies	BIO16	8	1	Laboratory training	cross-curricular	choosen activity
Big data for Healthcare: an introduction	MED50	8	1	Lecture	cross-curricular	choosen activity
Neuromechanics of human movement	MED 34	8	1	Lecture	cross-curricular	choosen activity
Science Draw Graphic	M-PSI02	12	1	Lecture	cross-curricular	cross-curricular
Total hrs/credits		220	24			

Educational form*

lecture laboratory training seminar Type of activity**

curricular cross-curricular