• Colombo, R., Damiani, C., Gilbert, D., Heiner, M., Mauri, G., & Pescini, D. (2018). Emerging ensembles of kinetic parameters to characterize observed metabolic phenotypes. BMC BIOINFORMATICS, 19(Suppl 7), 45-59. Dettaglio
  • Nobile, M., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., & Pasi, G. (2018). Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization. SWARM AND EVOLUTIONARY COMPUTATION, 39, 70-85. Dettaglio
  • Di Filippo, M., Damiani, C., Colombo, R., Pescini, D., & Mauri, G. (2017). Constraint-based modeling and simulation of cell populations. In Advances in Artificial Life, Evolutionary Computation, and Systems Chemistry. 11th Italian Workshop, WIVACE 2016, Fisciano, Italy, October 4-6, 2016, Revised Selected Papers (pp.126-137). Springer Verlag. Dettaglio
  • Colombo, R., Damiani, C., Mauri, G., & Pescini, D. (2017). Constraining mechanism based simulations to identify ensembles of parametrizations to characterize metabolic features. In Computational Intelligence Methods for Bioinformatics and Biostatistics. 13th International Meeting, CIBB 2016, Stirling, UK, September 1-3, 2016, Revised Selected Papers (pp.107-117). Springer Verlag. Dettaglio
  • Damiani, C., Colombo, R., Gaglio, D., Mastroianni, F., Pescini, D., Westerhoff, H., et al. (2017). A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect. PLOS COMPUTATIONAL BIOLOGY, 13(9), 1-29. Dettaglio