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1 Introduction

In the previous lesson, we have discussed how to forecast a time series, when the time
dependency is linear and deterministic. Actually, the behavior of real time series is
more complex and trying to specify a mathematical function f(t) capable to fit the data
and forecast new observations would be rather artificial and ineffective. In particular,
any deterministic model of time dependency would lead, at best, to overfitting, i.e. to
building models that adapt to and fit the observed data, but fail to properly forecast the
future. To get more flexible and effective forecasting procedures, we must explicitly base
them on the local past history of the series, in such a way that the “memory” structure
of the data generating process is adaptively taken into account. In this lesson, we
introduce Exponential smoothing, a very simple, non-inferential approach to forecasting,
which proves useful when dealing with short-term forecasting on short time series (where
more sophisticated inferential procedures cannot be applied).

2 Formal development

Let x1, . . . , xt be an observed time series which oscillates around a fixed value, but where
some persistencies occur and some correlation between the past and the future exists.
In such a case, the intuitive idea is that recent observations are most useful than past
ones, when forecasting the next future. We then want to forecast xt+1 as a weighted
average of x1, . . . , xt, where weights decrease as we move to the past.

2.1 A technical result

To develop the Exponential smoothing procedure, we need a simple technical result. Let
λ be a real number, such that |λ| < 1; then the following equality holds:

∞∑
i=0

λi =
1

1− λ
. (1)

Proof. Since |λ| < 1,
∑∞

i=0 λ
i is convergent, so that we can put

∑∞
i=0 λ

i = S <∞. We
then have:

S =

∞∑
i=0

λi = 1 +

∞∑
i=1

λi = 1 +

∞∑
i=0

λi+1 = 1 + λ

∞∑
i=0

λi = 1 + λS, (2)

1



so that S = 1/(1− λ).

3 Exponential smoothing: the infinite case

Let us begin by considering the case of a time series starting at t = −∞. This is clearly
an abstraction, but it is very useful to set the stage and to understand the functioning
of the exponential smoothing procedure.

Let x−∞, . . . , xt be an observed and stationary time series; we want to forecast the
next observation xt+1, given the observed past, as a linear combination of the past
observations, namely we put:

x̂t+1|≤t =

∞∑
i=0

αixt−i (3)

where x̂t+1|≤t is the forecast for xt, αi ≥ 0 ∀ i and
∑∞

i=0 αi = 1. In practice, x̂t+1|≤t
is a weighted average of the past observations. To make things simple, we want coef-
ficients αi to depend upon a single parameter 0 < λ < 1 and we choose the following
parametrization:

αi = (1− λ)λi. (4)

This choice amounts at averaging past observations with weights decreasing as we move
to the past, following a power-law. Notice that forecasting by means of weighted averages
makes this approach suitable for non-trended time-series only. In fact, weighted averages
satisfy the internality condition, so that inf(x−∞, . . . , xt) ≤ x̂t+1|≤t ≤ sup(x−∞, . . . , xt).
As a consequence, the exponential smoothing procedure cannot forecast values outside
the range of past observations (and this is why we have restricted the procedure to
stationary time-series only). With the above parametrization, we have:

x̂t+1|≤t = (1− λ)

∞∑
i=0

λixt−i. (5)

This expression can be casted in two different and useful forms.

1. The forecast x̂t+1|≤t can be expressed as a weighted average of the last observation
xt and the forecast x̂t|≤t−1 of xt, in fact:

x̂t+1|≤t = (1− λ)

∞∑
i=0

λixt−i = (1− λ)xt + (1− λ)

∞∑
i=1

λixt−i =

= (1− λ)xt + λ(1− λ)

∞∑
i=1

λi−1xt−i = (1− λ)xt + λ(1− λ)

∞∑
i=0

λixt−1−i =

= (1− λ)xt + λx̂t|≤t−1.
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2. The forecast x̂t+1|≤t can then also be casted into the so-called error-correction
form:

x̂t+1|≤t = (1− λ)xt + λx̂t|≤t−1 = xt − λ(xt − x̂t|≤t−1).

The last term is λ times the forecast error of xt, based on its past. Putting
λ = 1− α, the last expression becomes:

x̂t+1|≤t = xt − (1− α)(xt − x̂t|≤t−1) = x̂t|≤t−1 + α(xt − x̂t|≤t−1) =

= x̂t|≤t−1 + (1− λ)(xt − x̂t|≤t−1).

This is the final error-correction form, which recursively expresses the forecast of
xt+1 as the forecast x̂t|≤t−1, corrected by the forecast error, weighted by 1− λ.

The above forms of the Exponential smoothing forecast show how the procedure adapts
to the movements of the time series, trying to “chase” its dynamics over time. In
other words, even if the “global” level of the time series does not change (recall that the
series is assumed to be stationary), the local level can indeed change and the Exponential
smoothing tries to “react” to this behavior, linking the short-term forecast to the varying
local level of the series.

4 Exponential smoothing: the finite case

In practice, we deal only with finite sequences of observations, i.e. with finite time-
series, which start from a fixed time t1 in the past. In this case, we cannot apply
Exponential smoothing in its orginal form (i.e. as an infinite weighted average); however,
we can use its recursive formulation, by choosing a proper initial condition to start the
computations.

Consider x̂t+1|≤t = (1 − λ)xt + λx̂t|≤(t−1) and substitute x̂t|≤(t−1) with its recursive
espression x̂t|≤(t−1) = (1− λ)xt−1 + λx̂t−1|≤(t−2):

x̂t+1|≤t = (1− λ)xt + λ(1− λ)xt−1 + λ2x̂t−1|≤(t−2). (6)

Going on and substituting recursively the exponential smoothing relation into the above
equality, in the end we get:

x̂t+1|≤t = (1− λ)
t−1∑
i=0

λixt−i + λtx̂1|≤0. (7)

Setting the initial condition x̂1|≤0 = S0, we can then get x̂t+1|≤t as:

x̂t+1|≤t = (1− λ)

t−1∑
i=0

λixt−i + λtS0. (8)
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Ideally, the term S0 should be a “summary” of the (unobserved) past and, in practice,
must be guessed in some way. The most common choices for S0 are to simply put
S0 = x1, or to put S0 = 1/q

∑q
i=1 xi, for a suitable number of initial observations q.

Notice, however, that since 0 < λ < 1, for sufficiently high values of t the term λtS0
becomes negligible, so that on the long-run the effect of the initial condition gets lost.

The key point, to run the exponential smoothing procedure, is finally to set the value
for parameter λ. This can be done numerically, following the procedure below:

1. We set S0 as discussed above.

2. Given S0, we can compute the forecast sequence x̂1|0 = S0, x̂2|1, x̂3|≤2, x̂4|≤3, . . . , x̂t|≤t−1.

3. From the forecast sequence, we can compute the squared sum of the forecasting
errors, i.e. E2(λ) =

∑t
i=1(xi − x̂i|≤(i−1))

2. This expression depends upon the
smoothing parameter and then we search for λ to minimize E2(λ).

Final remarks

1. We have discussed how to forecast xt+1, given its past. However, we may want
to forecast xt+2, xt+3 . . . or, in general, ` steps ahead of t. A practical way to do
this is to artificially add to the time series the forecasted values x̂t+1, . . . , x̂t+`−1
and to compute x̂t+` on this new series, as usual. Notice that, this way, we still
express x̂t+` as a weighted average of x1, . . . , xt, so we are still using the information
comprised in the observed series only.

2. Since the forecast errors depend upon S0 and λ, we can set both parameters by
numerically minmizing E(S0, λ)2 on them, jointly.

3. If the time series is long enough, it is reccomandable to perform the minimization
of E(S0, λ)2 on a subset of data (say, the first 2/3 of the time series) and to test
the forecasting effectiveness on the remaining data, so as to check for possible
overfitting in the minimization process.

5 R codes

In the following, we provide some R code performing Exponential smoothing. The first
procedure computes the Exponential smoothing forecast, for smoothing parameters set
by the user and for two different initial conditions (see Figure 1 and 2). The second R
procedure does the same, but optimizing over the smoothing parameter, as described in
the main text (see Figure 3 and 4).
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######################################

#

# EXPONENTIAL SMOOTHING STEP-BY-STEP

#

######################################

## GENERATING THE TIME SERIES ##

LNG<-70 # Length of the time series (must be greater than 20)

SERIES<-arima.sim(list(order=c(1,0,0), ar=.8), n=LNG)

## SETTING SMOOTHING PARAMETERS ##

LAMBDA<-.2 # Smoothing parameter (set it in (0,1) )

Q<-10 # Number of initial obsevations to average

S0a<-SERIES[1] # First kind of initialization

S0b<-mean(SERIES[1:Q]) # Second kind of initialization

## PERFORMING SMOOTHING ##

SMOOTHED<-matrix(0,nrow=length(SERIES), ncol=2)

colnames(SMOOTHED)<-c("S0a", "S0b")

SMOOTHED[1,"S0a"]<-S0a

SMOOTHED[1,"S0b"]<-S0b

for(h in 2:length(SERIES))

{

SMOOTHED[h,"S0a"]<-(1-LAMBDA)*SERIES[h-1]+LAMBDA*SMOOTHED[h-1,"S0a"]

SMOOTHED[h,"S0b"]<-(1-LAMBDA)*SERIES[h-1]+LAMBDA*SMOOTHED[h-1,"S0b"]

}

## COMPUTING POINTWISE SMOOTHING ERRORS ##

SMOOTHING.ERROR<-matrix(0,nrow=length(SERIES), ncol=2)

colnames(SMOOTHING.ERROR)<-c("S0a", "S0b")

SMOOTHING.ERROR[,"S0a"]<-SERIES-SMOOTHED[,"S0a"]
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SMOOTHING.ERROR[,"S0b"]<-SERIES-SMOOTHED[,"S0b"]

## COMPUTING SUM OF SQUARED ERRORS ##

SQUARED.ERROR<-vector("numeric", length=2)

names(SQUARED.ERROR)<-c("S0a", "S0b")

SQUARED.ERROR["S0a"]<-sum(SMOOTHING.ERROR[,"S0a"]^2)

SQUARED.ERROR["S0b"]<-sum(SMOOTHING.ERROR[,"S0b"]^2)

MEAN.SQUARED.ERROR<-SQUARED.ERROR/nrow(SMOOTHING.ERROR)

names(MEAN.SQUARED.ERROR)<-c("S0a", "S0b")

SQUARED.ERROR

MEAN.SQUARED.ERROR

## ONE-STEP AHEAD FORECASTING ##

FORECAST<-vector("numeric", length=2)

names(FORECAST)<-c("S0a", "S0b")

FORECAST["S0a"]<-(1-LAMBDA)*SERIES[length(SERIES)]

+LAMBDA*SMOOTHED[nrow(SMOOTHED),"S0a"]

FORECAST["S0b"]<-(1-LAMBDA)*SERIES[length(SERIES)]

+LAMBDA*SMOOTHED[nrow(SMOOTHED),"S0b"]

## PLOTTING RESULTS ##

par(mfrow=c(2,2))

plot(SERIES, xlim=c(1,LNG+1), pch=20, type="o", main="SMOOTHED S0a")

points(SMOOTHED[,"S0a"], pch=20, type="o", col="red", cex=1.1)

plot(SERIES, xlim=c(1,LNG+1), pch=20, type="o", main="SMOOTHED S0b")

points(SMOOTHED[,"S0b"], pch=20, type="o", col="blue", cex=1.1)

plot(SERIES, xlim=c(LNG-20,LNG+1), type="o", main="FORECAST S0a (red point)")

points((LNG+1), FORECAST["S0a"], pch=20, type="o", col="red", cex=2)

plot(SERIES, xlim=c(LNG-20,LNG+1), type="o", main="FORECAST S0b (red point)")

points((LNG+1), FORECAST["S0b"], pch=20, col="red", cex=2)
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Figure 1: Upper panels: input time series (black) and the rolling forecasts (coloured);
lower panels: forecast of the next observation (for two different initial conditions).
Smoothing parameter = 0.8.
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Figure 2: Upper panels: input time series (black) and the rolling forecasts (coloured);
lower panels: forecast of the next observation (for two different initial conditions).
Smoothing parameter = 0.2.
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###################################

#

# OPTIMIZED EXPONENTIAL SMOOTHING

#

###################################

# REMARK: WE COULD USE NUMERICAL OPTIMIZATION FUNCTIONS

# AVAILABLE IN R. FOR DIDACTICAL PURPOSES, HERE WE INSTEAD

# DEFINE A GRID OF LAMBDA VALUES, AND SEARCH THE BEST VALUE

# IN IT. WE BUILD A FUNCTION TO COMPUTE THE SMMOTHING ERROR

# AND APPLY IT TO THE GRID.

EXPONENTIAL.SMOOTHING<-function(LAMBDA, S0a, S0b)

{

SMOOTHED<-matrix(0,nrow=length(SERIES), ncol=2)

colnames(SMOOTHED)<-c("S0a","S0b")

SMOOTHED[1,"S0a"]<-S0a

SMOOTHED[1,"S0a"]<-S0b

for(h in 2:length(SERIES))

{

SMOOTHED[h,"S0a"]<-(1-LAMBDA)*SERIES[h-1]+LAMBDA*SMOOTHED[h-1,"S0a"]

SMOOTHED[h,"S0b"]<-(1-LAMBDA)*SERIES[h-1]+LAMBDA*SMOOTHED[h-1,"S0b"]

}

SMOOTHING.ERROR<-matrix(0,nrow=length(SERIES), ncol=2)

colnames(SMOOTHING.ERROR)<-c("S0a","S0b")

SMOOTHING.ERROR[,"S0a"]<-SERIES-SMOOTHED[,"S0a"]

SMOOTHING.ERROR[,"S0b"]<-SERIES-SMOOTHED[,"S0b"]

SQUARED.ERROR<-vector("numeric", length=2)

names(SQUARED.ERROR)<-c("S0a","S0b")

SQUARED.ERROR["S0a"]<-sum(SMOOTHING.ERROR[,"S0a"]^2)

SQUARED.ERROR["S0b"]<-sum(SMOOTHING.ERROR[,"S0b"]^2)

FORECAST<-vector("numeric", length=2)

names(FORECAST)<-c("S0a","S0b")

FORECAST["S0a"]<-(1-LAMBDA)*SERIES[length(SERIES)]+LAMBDA*SMOOTHED[nrow(SMOOTHED),"S0a"]

FORECAST["S0b"]<-(1-LAMBDA)*SERIES[length(SERIES)]+LAMBDA*SMOOTHED[nrow(SMOOTHED),"S0b"]

list("SMOOTHED"=SMOOTHED, "SMOOTHING.ERROR"=SMOOTHING.ERROR,

+ "FORECAST"=FORECAST, "SQUARED.ERROR"=SQUARED.ERROR)

}

LNG<-70 # Length of the time series (must be greater than 20)
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SERIES<-arima.sim(list(order=c(1,0,0), ar=.6), n=LNG)

Q<-10 # Number ofinitial obsevations to average

S0a<-SERIES[1] # First kind of initialization

S0b<-mean(SERIES[1:Q]) # Second kind of initialization

LAMBDA.GRID<-seq(from=0, to=1, length.out=1000) #1000 values, comprising also 0 and 1.

EXP.SMOOTHING<-lapply(LAMBDA.GRID, function(x) EXPONENTIAL.SMOOTHING(x, S0a, S0b))

SQUARED.ERROR.GRID<-lapply(EXP.SMOOTHING, function(x) x$SQUARED.ERROR)

SQUARED.ERROR.GRID<-matrix(unlist(SQUARED.ERROR.GRID), ncol=2, byrow=TRUE)

colnames(SQUARED.ERROR.GRID)<-c("S0a","S0b")

QUALE.OPTIM<-vector("numeric", length=2)

names(QUALE.OPTIM)<-c("S0a","S0b")

QUALE.OPTIM["S0a"]<-which(SQUARED.ERROR.GRID[,"S0a"]==min(SQUARED.ERROR.GRID[,"S0a"]))

QUALE.OPTIM["S0b"]<-which(SQUARED.ERROR.GRID[,"S0b"]==min(SQUARED.ERROR.GRID[,"S0b"]))

LAMBDA.OPTIM<-c(LAMBDA.GRID[QUALE.OPTIM["S0a"]], LAMBDA.GRID[QUALE.OPTIM["S0b"]])

LAMBDA.OPTIM #Values of the optimal LAMBDAs for the two initial conditions

## PLOTTING TOTAL SQUARED ERRORS ##

windows()

par(mfrow=c(1,2))

plot(LAMBDA.GRID,SQUARED.ERROR.GRID[,"S0a"], type="o", ylim=c(min(SQUARED.ERROR.GRID),

+ max(SQUARED.ERROR.GRID)), xlab="LAMBDA", ylab="Squared error", main="S0a")

plot(LAMBDA.GRID,SQUARED.ERROR.GRID[,"S0b"], type="o", ylim=c(min(SQUARED.ERROR.GRID),

+max(SQUARED.ERROR.GRID)), xlab="LAMBDA", ylab="Squared error", main="S0b")

## EXTRACTING AND PLOTTING ONE-STEP AHEAD FORECAST AS A FUNCTION OF LAMBDA ##

FORECAST.GRID<-lapply(EXP.SMOOTHING, function(x) x$FORECAST)

FORECAST.GRID<-matrix(unlist(FORECAST.GRID), ncol=2, byrow=TRUE)

colnames(FORECAST.GRID)<-c("S0a","S0b")

windows()

par(mfrow=c(1,2))

plot(FORECAST.GRID[,"S0a"], type="o", ylim=c(min(FORECAST.GRID),

+ max(FORECAST.GRID)), xlab="LAMBDA", ylab="Forecast", main="S0a")

plot(FORECAST.GRID[,"S0b"], type="o", ylim=c(min(FORECAST.GRID),
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+ max(FORECAST.GRID)), xlab="LAMBDA", ylab="Forecast", main="S0b")

## EXTRACTING OPTIMAL SOLUTIONS (for S=a and S0b) ##

SOLUTION.S0a<-EXP.SMOOTHING[[QUALE.OPTIM["S0a"]]]

SOLUTION.S0a$SMOOTHED<-SOLUTION.S0a$SMOOTHED[,"S0a"]

SOLUTION.S0a$SMOOTHING.ERROR<-SOLUTION.S0a$SMOOTHING.ERROR[,"S0a"]

SOLUTION.S0a$FORECAST<-SOLUTION.S0a$FORECAST["S0a"]

SOLUTION.S0a$SQUARED.ERROR<-SOLUTION.S0a$SQUARED.ERROR["S0a"]

SOLUTION.S0b<-EXP.SMOOTHING[[QUALE.OPTIM["S0b"]]]

SOLUTION.S0b$SMOOTHED<-SOLUTION.S0b$SMOOTHED[,"S0b"]

SOLUTION.S0b$SMOOTHING.ERROR<-SOLUTION.S0b$SMOOTHING.ERROR[,"S0b"]

SOLUTION.S0b$FORECAST<-SOLUTION.S0b$FORECAST["S0b"]

SOLUTION.S0b$SQUARED.ERROR<-SOLUTION.S0b$SQUARED.ERROR["S0b"]

## PLOTTING SMOOTHING AND FORECAST OF THE OPTIMAL SOLUTIONS ##

windows()

par(mfrow=c(2,2))

plot(SERIES, xlim=c(1,LNG+1), type="o", pch=20, main="SMOOTHED S0a")

points(SOLUTION.S0a$SMOOTHED, type="o", pch=20, col="red")

plot(SERIES, xlim=c(1,LNG+1), type="o", pch=20, main="SMOOTHED S0b")

points(SOLUTION.S0b$SMOOTHED, type="o", pch=20, col="blue")

plot(SERIES, xlim=c(LNG-20,LNG+1), type="o", pch=20, main="FORECAST S0a (red point)")

points((LNG+1), SOLUTION.S0a$FORECAST, type="o", pch=20, col="red", cex=2)

plot(SERIES, xlim=c(LNG-20,LNG+1), type="o", pch=20, main="FORECAST S0b (red point)")

points((LNG+1), SOLUTION.S0a$FORECAST, type="o", pch=20, col="red", cex=2)
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Figure 3: Squared error of the rolling forecasts, as the smoothing parameter changes in
[0, 1], for two different initial conditions (minima at 0.366 and 0.368, respectively).
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Figure 4: Upper panels: input time series (black) and the rolling forecasts (coloured);
lower panels: forecast of the next observation (for two different initial conditions). Op-
timal smoothing parameters, for the initial conditions S0a and S0b are equal to 0.366
and 0.368, respectively.
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