Anno di corso: 1

Crediti: 6
Crediti: 8
Crediti: 12
Tipo: A scelta dello studente

Anno di corso: 2

Crediti: 12
Tipo: A scelta dello studente
Crediti: 30
Tipo: Lingua/Prova Finale
Crediti: 3
Tipo: Altro
Crediti: 3
Tipo: Altro

PHYSICS AND TECHNOLOGY OF ELECTRONIC DEVICES WITH LABORATORY

Scheda dell'insegnamento

Anno accademico di regolamento: 
2017/2018
Anno di corso: 
2
Anno accademico di erogazione: 
2018/2019
Tipo di attività: 
Obbligatorio a scelta
Lingua: 
Inglese
Crediti: 
6
Ciclo: 
Primo Semestre
Ore di attivita' didattica: 
51
Prerequisiti: 

Solid State Physics and Physics and Semiconductors.

Moduli

Metodi di valutazione

Modalita' di verifica dell'apprendimento: 

Students must demonstrate in an interview to know how the main principles of the physics of semiconductors can be used in the design and development of electronic devices with specific functions, and how the device functions can be modelled and analysed in the laboratory with suitable approaches.

Valutazione: 
Voto Finale

Obiettivi formativi

The course is devoted to provide the student with the fundamentals of the physics and technology of semiconductors devices. In addition to lectures the course offers two laboratory activities dedicated to state of the art electrical characterization and simulation of the devices.

Contenuti

Physics of conventional electronic devices (junctions, transistors), of ultrascaled nanoelectronic devices (single electron and single atom transistors), and of emerging and novel nanoelectronic and spintronic devices for logic and memory applications, and for quantum information processing. Nanoelectronic devices (EOS, EOSFETs, Memristors) for neuroelectronic applications will be also discussed.

Programma esteso

LECTURES
1. p-n junction: unpolarized and polarized junction. Current-Voltage characteristic in ideal and real junctions. The junction capacitance. Breakdown. Models. Solar cells. PiN diodes. (PTED1-PTED9)
2. Bipolar Transistors (BJT): Currents. Active mode. Gain. (PTED10-PTED13)
3. Metal-Semiconductor Contact: Ohmic and Schottky contacts. Schottky diode. Characteristic I-V. Interface states. (PTED14)
4. Metal Oxide Semiconductor: band structures. MOS capacitor. Accumulation, depletion and inversion. Capacitance. Effect of interface states. The MOSFET. Evolution of the MOSFET: SOI MOSFET, high mobility substrates, high-k, quantum effects in the inversion channel, the leakage currents. (PTED15-PTED22)
5. Non-volatile memory devices: FLASH memories, nanocrystals, PCM, ReRAM. (PTED23)
6. Electronic devices based on heterojunction: HBT, HEMT. (PTED24)
7. Electronic devices based on quantum effects: tunnel diodes, Tunneling-FET, low-dimensional devices, Fin-FET, single-electron transistor (SET), Coulomb blockade, spin blockade. (PTED25)
8. Emerging spintronic devices: transistors based on the transport of spin, magnetic tunnel junctions. (PTED26)
9. Solid state devices for quantum computing: introduction to quantum computing, qubit, spin in semiconductors (manipulation, entanglement, detection). (PTED27)
10. Neuroelectronic: devices for stimulation / sense neuronal activity, devices for emulating the synaptic and neuronal activity in neuromorphic circuits. (PTED28)
LABORATORY
1. Introduction to the experimental techniques and set-ups (LPTEDE1)
2. Semiconductor-metal contacts: ohmic and Schottky contacts. Zener diode. (LPTEDE2)
3. BJT: I-V (LPTEDE3)
4. MOS: C-V (doping profile, defects, high-k -EOT) (LPTEDE4)
5. MOSFET: I-V, C-V (LPTEDE5)
6. Introduction to TCAD (LPTEDS1)
7. Surviving to Linux (LPTEDS2)
8. Building up the device: SSE (LPTEDS3)
9. Practice: Zener diode / MOSFET / Bipolar (LPTEDS4)
10. Hints on discretization (LPTEDS5)
11. Meshing the device: SSE/SNMESH (LPTEDS6)
12. Practice: Zener diode / MOSFET / Bipolar (LPTEDS7)
13. Solving the device: SDevice 3h (LPTEDS8)
14. Visualizing results: SVisual 1h (LPTEDS9)
15. Practice: simulated device characterization (LPTEDS10)

Bibliografia consigliata

Textbook and teaching resource
Reference textbooks:
R.F. Pierret, Semiconductor Device Fundamentals, Addison Wesley
M.S. Sze, Semiconductor devices, Physics and Technology, J. Wiley
Notes from the teachers
Slides of the lectures on the e-learning platform

Modalità di erogazione

Convenzionale

Metodi didattici

The course comprises lectures in the classroom and a laboratory part dedicated to electrical characterization and simulation.