Anno di corso: 1

Crediti: 8
Crediti: 8
Crediti: 8
Crediti: 8
Crediti: 8
Crediti: 8
Crediti: 8
Tipo: A scelta dello studente
Crediti: 8
Tipo: A scelta dello studente
Crediti: 10
Tipo: A scelta dello studente
Crediti: 10
Tipo: A scelta dello studente

Anno di corso: 2

Crediti: 8
Crediti: 16
Tipo: A scelta dello studente
Crediti: 39
Tipo: Lingua/Prova Finale

METODI MATEMATICI PER L’ANALISI ECONOMICA – CONTROLLO OTTIMO

Scheda dell'insegnamento

Anno accademico di regolamento: 
2018/2019
Anno di corso: 
1
Anno accademico di erogazione: 
2018/2019
Tipo di attività: 
Obbligatorio a scelta
Lingua: 
Italiano
Crediti: 
8
Ciclo: 
Primo Semestre
Ore di attivita' didattica: 
56
Prerequisiti: 

Le conoscenze acquisite nei corsi della laurea triennale sono una base sufficiente.

Moduli

Metodi di valutazione

Tipo di esame: 
Orale
Modalita' di verifica dell'apprendimento: 

Prova scritta ed orale.

Valutazione: 
Voto Finale

Obiettivi formativi

Lo scopo del corso è quello di fornire gli strumenti essenziali per lo studio dell’ottimizzazione dinamica, di mostrare alcuni classiche applicazioni economiche e alla teoria dei giochi differenziali.

Contenuti

Problemi di controllo ottimo con il metodo variazionale: teoria e modelli economici. Problemi di controllo ottimo con la programmazione dinamica: teoria e modelli economici. Introduzione ai giochi differenziali.

Programma esteso

1. INTRODUZIONE AL CONTROLLO OTTIMO
a. Alcuni problemi introduttivi
In barca con Pontryagin, un modello di consumo ottimo, ”the lady in the lake”.
b. Formulazione di un problema di controllo ottimo
Definizioni di controlli, dinamica, traiettorie, insieme di controllo, target set.
Funzioni assolutamente continue. Soluzione di una equazione differenziale ordinaria con funzioni misurabili: definizione e teorema di esistenza e unicità. Controlli ammissibili. Importanza del caso della dinamica lineare. Insieme dei punti raggiungibili.

2. Il CONTROLLO OTTIMO CON METODO VARIAZIONALE
a. Il problema più semplice di controllo ottimo
Il teorema di Pontryagin (DIM nel caso di insieme di controllo U=R, DIM anche del lemma tecnico): definizione di Hamiltoniana e conseguenze del principio del Massimo. Controllo estremale, moltiplicatore associato. Controllo normale e abnormale: un esempio di controllo ottimo abnormale. Proprietà dell’Hamiltoniana lungo il cammino ottimo (DIM).
Problemi autonomi: proprietà dell’Hamiltoniana lungo il cammino ottimo.
Condizioni sufficienti di ottimalità: la condizione di Mangasarian (DIM). Funzioni concave, sopragradiente, sopragradiente di funzioni differenziabili, cenni al Teorema di Rockafellar: la condizione sufficiente di Arrow (DIM).
Condizioni di transversalità per i problemi con punti iniziali/finali fissati. Sui problemi di minimo.
A two sector model with investment and consumption goods.
b. Il problema più semplice di calcolo delle variazioni
Il teorema di Eulero (DIM come caso particolare del teorema di Pontryagin). Condizioni di transversalità per i problemi con punti iniziali/finali fissati. Condizioni sufficienti per il problema più semplice usando concavità/convessità.
Curva di lunghezza minima.
c. Controlli singolari e bang-bang
Definizioni di controlli bang-bang, istanti di commutazione e controlli singolari. La costruzione di una strada di montagna a costo minimo.
d. Problema più generali di controllo ottimo
Problemi di Mayer, di Bolza e Lagrange: loro equivalenza (DIM).
Problemi a tempo finale fisso: condizione necessaria e condizione sufficiente per il problema di Bolza, problemi autonomi. Problemi a tempo finale libero: nozione di tempo di uscita, condizione necessaria per il problema di Bolza, problemi autonomi.
Problemi di time optimal: condizione necessaria. In barca con Pontryagin. Problemi di time optimal singolari: the Dubin car.
Problemi ad orizzonte infinito: controesempio di Halkin; condizione sufficiente (DIM). Hamiltoniana corrente e moltiplicatore corrente e loro condizioni necessarie (DIM) e sufficienti. Modelli di crescita economica: preferenze, funzioni di utilità: un modello di consumo ottimo con utilità logaritmica.
e. Problemi di esistenza e controllabilità
Esempi di classe di controlli vuota o di classe di controlli non vuota e senza controllo ottimo (controesempio di Bolza). Disuguaglianza di Gronwall (DIM). Teorema di esistenza del controllo ottimo per i problemi di Bolza: il caso con insieme di controllo chiuso e il caso con insieme controllo compatto.

3. CONTROLLO OTTIMO CON IL METODO DELLA PROGRAMMAZIONE DINAMICA
a. La funzione valore e le sue proprietà per il problema più semplice di controllo ottimo.
Definizione della funzione valore. Il principio di ottimalità di Bellman (DIM).
Le proprietà della funzione valore: la condizione (necessaria) finale sulla funzione valore (DIM), l’equazione di Bellmann-Hamilton-Jacobi (BHJ) per funzioni valori differenziabili (DIM). L’Hamiltoniana della Programmazione Dinamica. Condizioni sufficienti di ottimalità (DIM). L’equazione di BHJ lungo la traiettoria ottima. Sui problemi di minimo.
Soluzione del problema di strategia aziendale di produzione/vendita.
Problemi Affini-Quadratici e Lineari-Quadratici-omogenei: loro funzione valore. Equazioni differenziali di Ricatti.
La funzione valore del problema a tempo finale fisso e valore finale libero (sotto opportune ipotesi), è Lipschitz (DIM per problemi autonomi). Cenni al teorem

Bibliografia consigliata

[C1] A. Calogero “Notes on optimal control theory”, disponibile gratuitamente in rete.
[C2] A. Calogero “A very short tour on differential games”, disponibile gratuitamente in rete.
[C3] A. Calogero “Exercises of dynamic optimization”, disponibile gratuitamente in rete.

Ulteriore materiale didattico:
[BO] T. Başar, G.O. Olsder “Dynamic noncooperative game theory”, SIAM Classic in Applied Mathematics, 1998
[B] A. Bressan “Noncooperative differential games. A Tutorial”, Milan Journal of Nathematics, vol 79, pag 357-427, 2011.
[E] L.C. Evans “An introduction to mathematical optimal control theory”, disponibile gratuitamente in rete.
[FR] W.H. Fleming, R.W. Rishel "Deterministic and stochastic optimal control", Springer-Verlag, 1975
[KS] M.I. Kamien, N.L. Schwartz “Dynamic optimization” Elsevier, second edition, 2006
[SS] A. Seierstad, K Sydsæter “Optimal control theory with economics applications” Elsevier Science, 1987

Modalità di erogazione

Convenzionale

Metodi didattici

Lezioni frontali con esercitazioini.

Contatti/Altre informazioni

Sul sito web: www.matapp.unimib.it è possibile trovare le informazioni sul c.v. del docente, il numero di telefono dello studio, la sede universitaria o di lavoro, l’orario di ricevimento studenti e l’indirizzo e-mail.