Anno di corso: 1

Crediti: 8
Crediti: 8
Crediti: 8
Crediti: 8
Crediti: 8
Crediti: 8
Crediti: 8
Tipo: A scelta dello studente
Crediti: 8
Tipo: A scelta dello studente
Crediti: 10
Tipo: A scelta dello studente
Crediti: 10
Tipo: A scelta dello studente

Anno di corso: 2

Crediti: 8
Crediti: 16
Tipo: A scelta dello studente
Crediti: 39
Tipo: Lingua/Prova Finale

ARGOMENTI DI GEOMETRIA E TOPOLOGIA

Scheda dell'insegnamento

Anno accademico di regolamento: 
2018/2019
Anno di corso: 
1
Anno accademico di erogazione: 
2018/2019
Tipo di attività: 
Obbligatorio a scelta
Lingua: 
Italiano
Crediti: 
8
Ciclo: 
Primo Semestre
Ore di attivita' didattica: 
56
Prerequisiti: 

Corsi di base di geometria e algebra della Laurea Triennale.

Moduli

Metodi di valutazione

Tipo di esame: 
Orale
Modalita' di verifica dell'apprendimento: 

Esame orale, sul contenuto del corso, approfondimenti, rielaborazione ed esposizione personale. La data e il contenuto dell'esposizione parte dell'esame vanno concordati prima con il docente.

Valutazione: 
Voto Finale

Obiettivi formativi

L'obiettivo del corso è di affrontare alcuni argomenti classici nella topologia algebrica dei complessi simpliciali, introducendo teorie di omologia, coomologia e alcuni aspetti della teoria di omotopia, con alcune applicazioni recenti.

Contenuti

Complessi simpliciali, omologia e coomologia dei poliedri, varietà triangolabili, gruppi di omotopia, applicazioni all’analisi di dati e ai sistemi dinamici.

Programma esteso

Richiami su spazi topologici, connessione e compattezza. Spazi topologici euclidei, e spazi di funzioni. Cenni sulle categorie e i diagrammi di push-out. Complessi simpliciali euclidei e astratti. Introduzione all'algebra omologica. Omologia con coefficienti. Categoria dei poliedri. Omologia dei poliedri. Prodotti di poliedri. Coomologia di poliedri. L'anello in coomologia, il prodotto cap. Varietà triangolabili. Superfici e classificazione. Dualità di Poincaré. Gruppo fondamentale di poliedri. Gruppo fondamentale e omologia. Gruppi di omotopia. Teoria di ostruzione. Applicazioni: omologia computazionale, omologia persistente, analisi di dati e sistemi dinamici.

Bibliografia consigliata

Ferrario, Piccinini, "Simplicial structures in topology". CMS Books in Mathematics, Springer, New York, 2011. xvi+243 pp. ISBN: 978-1-4419-7235-4

Metodi didattici

Lezioni frontali

Contatti/Altre informazioni

Ulteriori informazioni: http://www.matapp.unimib.it/~ferrario/agt-2017

Sul sito web: www.matapp.unimib.it è possibile trovare le informazioni sul c.v. del docente, il numero di telefono dello studio, la sede universitaria o di lavoro, l’orario di ricevimento studenti e l’indirizzo e-mail.