Anno di corso: 1

Anno di corso: 2

Crediti: 6
Crediti: 6
Crediti: 12
Tipo: A scelta dello studente
Crediti: 11
Tipo: Lingua/Prova Finale
Crediti: 30
Tipo: Altro

SPETTROSCOPIA E SIMMETRIA DI COMPOSTI INORGANICI

Scheda dell'insegnamento

Anno accademico di regolamento: 
2018/2019
Anno di corso: 
1
Anno accademico di erogazione: 
2018/2019
Tipo di attività: 
Obbligatorio a scelta
Lingua: 
Inglese
Crediti: 
6
Ciclo: 
Secondo Semestre
Ore di attivita' didattica: 
64
Prerequisiti: 

Knowledge of quantum mechanics

Moduli

Metodi di valutazione

Modalita' di verifica dell'apprendimento: 

Reports on the practical exercises and oral exam.

Valutazione: 
Voto Finale

Obiettivi formativi

Introduction to spettroscopy. Part I: Vibrational spectroscopy. Practical exercise I (Analysis of the vibrational spectrum of Mn(CO)5Br). Part II: Quantum mechanical methods (Density Functional Theory). Part III: UV-vis spectroscopy. Practical exercise II (Analysis of the UV-vis spectrum of [Ti(H2O)6]3+). Part IV: EPR spectroscopy. Practical exercise III (Analysis of the EPR spectrum of [Ti(H2O)6]3+).

Contenuti

The course aims at introducing the student to vibrational, electronic and magnetic spectroscopy making extensive use of group theory and quantum mechanics as essential tools to the modern practice of spectroscopy for transition metal complexes.

Programma esteso

Introduction to spettroscopy. Part I: Vibrational spectroscopy. Transition dipole moment. Symmetry selection rules. Group theory. Character tables. Reducible and irreducible representations. Decomposition formula. Normal modes of vibration. Practical exercise I (Analysis of the vibrational spectrum of Mn(CO)5Br). Part II: Quantum mechanical methods. Basis sets. Review of Hartree-Fock theory. Fundaments of density functional theory. Kohn-Sham formalism. Types of exchange and correlation functionals. Part III: UV-vis spectroscopy. Electronic transitions. Franck-Condon principle. Strength of the transition dipole moment. Selection rules. Oscillator strength. d-d transitions. Vibronic coupling. Orgel diagrams. Excitation energy calculation with time-dependent DFT (TD-DFT). Practical exercise II (Analysis of the UV-vis spectrum of [Ti(H2O)6]3+). Part IV: EPR spectroscopy. Zeeman effect. Hyperfine interaction. Spin-orbit coupling. g tensor. A hyperfine tensor. Isotropy and anisotropy. Practical exercise III (Analysis of the EPR spectrum of [Ti(H2O)6]3+).

Bibliografia consigliata

Teaching resources in terms of slides and notes.

Textbooks: Symmetry and spectroscopy by D. C. Harris and M. D. Bertolucci (Dover).

Physical methods in chemistry by R. S. Drago (Saunders).

Metodi didattici

Lectures in the class with PowerPoint presentations and practical exercises in the computational lab. Lectures are in english.