Corso di Dottorato: 
Ciclo di appartenenza: 


  • Seveso, A., Campagner, A., Ciucci, D., & Cabitza, F. (2020). Ordinal labels in machine learning: a user-centered approach to improve data validity in medical settings. BMC MEDICAL INFORMATICS AND DECISION MAKING, 20(S5). Dettaglio
  • Mercorio, F., Mezzanzanica, M., & Seveso, A. (2020). eXDiL: A Tool for Classifying and eXplaining Hospital Discharge Letters. In Machine Learning and Knowledge Extraction. 4th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland, August 25–28, 2020, Proceedings (pp.159-172). Springer. Dettaglio
  • Cabitza, F., Ventura, M., Tagliabue, P., Bozzetti, V., & Seveso, A. (2020). Developing a machine learning model for predicting postnatal growth in very low birth weight infants. In HEALTHINF 2020 - 13th International Conference on Health Informatics, Proceedings; Part of 13th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2020 (pp.490-497). SciTePress. Dettaglio
  • Assale, M., Dui, L., Cina, A., Seveso, A., & Cabitza, F. (2019). The Revival of the Notes Field: Leveraging the Unstructured Content in Electronic Health Records. FRONTIERS IN MEDICINE, 6. Dettaglio
  • Cabitza, F., Campagner, A., Ciucci, D., & Seveso, A. (2019). Programmed Inefficiencies in DSS-Supported Human Decision Making. In International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2019) (pp.201-212). Springer Verlag. Dettaglio