Progetti di ricerca

Questo sito utilizza cookie tecnici, propri e di terze parti, per garantire la corretta navigazione e analizzare il traffico e, con il tuo consenso, cookie di profilazione e altri strumenti di tracciamento di terzi per mostrare video e misurare l'efficacia delle attività di comunicazione istituzionale. Puoi rifiutare i cookie non necessari e di profilazione cliccando su “Rifiuta tutti”. Puoi scegliere di acconsentirne l’utilizzo cliccando su “Accetta tutti” oppure puoi personalizzare le tue scelte cliccando su “Rivedi le tue scelte sui cookie”.

Pagina 1 di 1

DN4UC- Dopants Networks in Silicon for Unconventional Computing (bando vEIColo)

Computing hardware is facing the urgent challenge of processing massive amounts of data with low power consumption and low latency, in particular because of the rapidly increasing demands from Artificial Intelligence (AI). Our vision is to develop a radically new Leggi tutto hardware platform for ultra-fast (~1 μs) and energy-efficient (~ 1 μW) edge-AI inference based on a world-first, unique, braininspired hybrid architecture of analogue in-memory computing, realised with nanoscale dopant network processing units (DNPUs) in silicon integrated with silicon/silicon nitride memristors. We apply the principle of material learning to exploit the intrinsic nonlinearity and tunability of a network of dopants in silicon without the need to design tailor-made circuitry for desired functionality. We integrate complex tunable nonlinear functionality with embedded memory to realise colocation of processing and memory, addressing the von Neumann bottleneck. A new unconventional computing paradigm is expected by combining in-materio and neuromorphic computing approaches. Our technology will be validated for all-hardware systems via machine-learning benchmarks and progressively more complex tasks with the MNIST handwritten digits, CIFAR10 and federated learning. Importantly, the silicon-based platform is an innovative, unconventional computing architecture that can nevertheless be realised with conventional CMOS technology. Low power consumption, low latency, and a small footprint make our technology uniquely suitable for edge computing, with unprecedented performance in areas such as autonomous AI and image processing for health and security. DN4UC will thus establish an energy-efficient, fast, nanoscale processing platform to handle societal challenges ranging from personalised health, climate, energy, to security, contributing to the digital and green transition. Moreover, we expect DN4UC to contribute to securing and maintaining the EU’s global leadership in AI.

Data di inizio:
Data di fine:
Bando: vEIColo | Accompagnamento per la valorizzazione della ricerca
Enti finanziatori: FONDAZIONE COMPAGNIA DI SAN PAOLO

Dopants Networks in Silicon for Unconventional Computing

Responsabili: FANCIULLI MARCO
Data di inizio:
Data di fine:
Bando: FAQC 2023 - prima finestra
Enti finanziatori: Università degli Studi di MILANO-BICOCCA

PNRR per la Missione 4, componente 2 Investimento 1.1- Avviso 104/2022 | Dopants Networks in Silicon for Unconventional Computing in Materia - DONORS

Responsabili: FANCIULLI MARCO
Data di inizio:
Data di fine:
Enti finanziatori: MINISTERO DELL'UNIVERSITA' E DELLA RICERCA (MUR)

Metodo per la produzione di film sottili di dicalcogenuri di metalli di transizione

Data di inizio:
Data di fine:
Bando: Bando per la realizzazione di programmi di valorizzazione dei brevetti tramite il finanziamento di progetti di Proof of Concept (PoC) delle Università italiane, degli Enti Pubblici di Ricerca (EPR) italiani e degli Istituti di Ricovero e Cura a Carattere
Enti finanziatori: MIMIT - Ministero delle Imprese e del Made in Italy

NEUREKA - A smart, hybrid neural-computo device for drug discovery

NEUREKA will bring a paradigm shift in drug discovery for neurological diseases, a sector that suffers multiple, repeated failures exacerbating the economical and societal burden of these incurable diseases. It will do so by addressing a crucial shortcoming: the lack Leggi tutto of in vitro systems faithfully reproducing brain pathology that enable the functional assessment of candidate compounds at multiple levels: from synapses to neuronal circuits. NEUREKA introduces an innovative, hybrid technology, whereby detailed, computational neuronal networks simulate dysfunction and drive cultured neurons to replicate in-brain disease conditions. Nanoelectrodes mediate the transmission between simulated and biological neurons. Akin to real synapses, nanoelectrodes contact cultured neurons at subcellular locations across the dendritic tree, soma and axonal branches, allowing to control and monitor neural activity with unprecedented accuracy. Biological neuronal responses registered by nanoelectrodes are fed back to simulated neurons, closing the loop and enabling control of activity states across the hybrid population. Complementing molecular deficits already present in culture models of a disease, computational models enable replication of both molecular and physiological deficits of neurodegeneration in vitro. Cultured neurons are driven towards pathological excitability states where deficits emerge, so as to optimize quantification of the impact of drugs, going well beyond standard cellular assays. A proof-of-concept will be provided for Alzheimer’s disease, using human induced pluripotent stem cell (iPSC)-derived neurons exhibiting the pathology. NEUREKA will be used to demonstrate the effect of drug candidates across synaptic, neuronal and network functions.

Responsabili: FANCIULLI MARCO
Data di inizio:
Data di fine:
Bando: FET-Open Challenging Current Thinking
Enti finanziatori: EUROPEAN COMMISSION

A new course on the Physics and technology of semiconductor devices with hand-on activity in a characterization and simulation lab

Responsabili: FANCIULLI MARCO
Data di inizio:
Data di fine:
Bando: Bando FIRB accordi di programma 2010
Enti finanziatori: MICRON TECHNOLOGY FOUNDATION INC

Eterostrutture radiali basate su nanofili di silicio e materiali bidimensionali

Responsabili: FANCIULLI MARCO
Data di inizio:
Data di fine:
Bando: Bando FIRB accordi di programma 2010
Enti finanziatori: FONDAZIONE BANCA DEL MONTE DI LOMBARDIA (FBML)

Elettronica a livello atomico in nanostrutture di silicio

Responsabili: FANCIULLI MARCO
Data di inizio:
Data di fine:
Bando: Bando Materiali Avanzati
a cura di Redazione Centrale, ultimo aggiornamento il 24/10/2022